Олимпиадные задачи по математике - сложность 3-4 с решениями
При каких <i>n</i> гири массами 1 г, 2 г, 3 г, ..., <i>n</i> г можно разложить на три равные по массе кучки?
a) Найдите число<i>k</i>, которое делится на 2 и на 9 и имеет всего 14 делителей (включая 1 и<i>k</i>). б) Докажите, что если заменить 14 на 15, то задача будет иметь несколько решений, а при замене 14 на 17 решений вообще не будет.
С помощью циркуля и линейки постройте треугольник, если дана одна его вершина и три прямых, на которых лежат его биссектрисы.