Олимпиадные задачи по математике для 11 класса - сложность 4 с решениями
Для каждого натурального <i>n</i> > 1 существует такое число <i>c<sub>n</sub></i>, что для любого <i>x</i> произведение синуса числа <i>x</i>, синуса числа <i>x</i> + <sup>π</sup>/<sub><i>n</i></sub>, синуса числа
<i>x</i> + <sup>2π</sup>/<sub><i>n</i></sub>, ..., наконец, синуса числа <i>x</i> + <sup>(<i>n</i> – 1)π</sup>/<sub><i>n</i></sub> равно произведению числа <i>c<sub>n</sub></i> на синус числа <i>nx</i>. Докажите это и найдите величину <i>c<sub>n</sub></i>.
Один из простейших многоклеточных<nobr>организмов —</nobr>водоросль<nobr>вольвокс —</nobr>представляет собой сферическую оболочку, сложенную, в основном, семиугольными, шестиугольными и пятиугольными клетками (то есть клетками, имеющими семь, шесть или пять соседних; в каждой «вершине» сходятся три клетки). Бывают экземпляры, у которых есть и четырёхугольные, и восьмиугольные клетки, но биологи заметили, что если таких «нестандартных» клеток (менее чем с пятью и более чем с семью сторонами) нет, то пятиугольных клеток<nobr>на 12</nobr>больше, чем семиугольных (всего клеток может быть несколько сотен и даже тысяч). Не можете ли вы объяснить этот факт?