Олимпиадные задачи по математике - сложность 2 с решениями

К каждому члену некоторой конечной последовательности подряд идущих натуральных чисел приписали справа по две цифры и получили последовательность квадратов подряд идущих натуральных чисел. Какое наибольшее число членов могла иметь эта последовательность?

Решите уравнение $$\tan\pi {}x = [\lg \pi^x]-[\lg [\pi^x]],$$ где $[a]$ обозначает наибольшее целое число, не превосходящее $a$.

Незнайка знаком только с десятичными логарифмами и считает, что логарифм суммы двух чисел равен произведению их логарифмов, а логарифм разности двух чисел равен частному их логарифмов. Может ли Незнайка подобрать хотя бы одну пару чисел, для которой действительно верны одновременно оба этих равенства?

Найдите наименьшее натуральное число, кратное 80, в котором можно так переставить две его различные цифры, что получившееся число также будет кратно 80.

Какое наибольшее количество множителей вида   <img align="absmiddle" src="/storage/problem-media/65208/problem_65208_img_2.gif">   можно вычеркнуть в левой части уравнения   <img align="absmiddle" src="/storage/problem-media/65208/problem_65208_img_3.gif">   так, чтобы число его натуральных корней не изменилось?

Сумма нескольких не обязательно различных положительных чисел не превосходила 100. Каждое из них заменили на новое следующим образом: сначала прологарифмировали по основанию 10, затем округлили стандартным образом до ближайшего целого числа и, наконец, возвели 10 в найденную целую степень. Могло ли оказаться так, что сумма новых чисел превышает 300?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка