Олимпиадные задачи по математике - сложность 3 с решениями

В трёх вершинах квадрата находятся три кузнечика. Они играют в чехарду, то есть прыгают друг через друга. При этом, если кузнечик <i>A</i> прыгает через кузнечика <i>B</i>, то после прыжка он оказывается от <i>B</i> на том же расстоянии, что и до прыжка, и, естественно, на той же прямой. Может ли один из них попасть в четвёртую вершину квадрата?

Пусть <i>p</i> – произвольное вещественное число. Найдите все такие <i>x</i>, что сумма кубических корней из чисел  1 – <i>x</i>  и  1 + <i>x</i>  равна <i>p</i>.

а) Докажите, что любая прямая, делящая пополам площадь и периметр треугольника, проходит через центр вписанной окружности.

б) Докажите аналогичное утверждение для любого описанного многоугольника.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка