Олимпиадные задачи по математике для 9-10 класса
На плоскости расположено 20 точек, никакие три из которых не лежат на одной прямой, из них 10 синих и 10 красных.
Докажите, что можно провести прямую, по каждую сторону которой лежит пять синих и пять красных точек.
Имеется натуральное число <i>n</i> > 1970. Возьмём остатки от деления числа 2<sup><i>n</i></sup> на 2, 3, 4, ..., <i>n</i>. Доказать, что сумма этих остатков больше 2<i>n</i>.
Около сферы радиуса 10 описан некоторый 19-гранник. Доказать, что на его поверхности найдутся две точки, расстояние между которыми больше 21.
а) Сумма длин рёбер любого выпуклого многогранника больше утроенного диаметра. Докажите это.<span class="prim">(Диаметром многогранника называют наибольшую из длин всевозможных отрезков с концами в вершинах многогранника.)</span>б) Для любых двух <nobr>вершин <i>A</i></nobr> <nobr>и <i>B</i></nobr> любого выпуклого многогранника существуют три ломаные, каждая из которых идёт по рёбрам многогранника <nobr>из <i>А</i></nobr> <nobr>в <i>В</i></nobr> и никакие две не проходят по одному ребру. Докажите это. в) Если в выпуклом многограннике разрезать два ребра, то для любых двух его <nobr>вершин <i>А</i></nobr> <nobr>и <i>В</i></nobr&g...