Олимпиадные задачи по математике - сложность 3 с решениями

В выпуклом четырёхугольнике <i>ABCD</i> точки <i>E</i> и <i>F</i> являются серединами сторон <i>BC</i> и <i>CD</i> соответственно. Отрезки <i>AE, AF</i> и <i>EF</i> делят четырёхугольник на четыре треугольника, площади которых равны (в каком-то порядке) последовательным натуральным числам. Каково наибольшее возможное значение площади треугольника <i>ABD</i>?

В строку выписано 23 натуральных числа (не обязательно различных). Докажите, что между ними можно так расставить скобки, знаки сложения и умножения, что значение полученного выражения будет делиться на 2000 нацело.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка