Олимпиадные задачи по математике для 2-8 класса - сложность 2 с решениями

Последовательность определяется так: первые её члены – 1, 2, 3, 4, 5. Далее каждый следующий (начиная с 6-го) равен произведению всех предыдущих членов минус 1. Докажите, что сумма квадратов первых 70 членов последовательности равна их произведению.

На отрезке  [0, 1]  числовой оси расположены четыре точки: <i>a, b, c, d</i>.

Докажите, что найдётcя такая точка <i>x</i>, принадлежащая  [0, 1],  что   <img align="absmiddle" src="/storage/problem-media/98260/problem_98260_img_2.png">  

Пусть <i>a, b, c, d</i> – такие вещественные числа, что  <i>a</i>³ + <i>b</i>³ + <i>c</i>³ + <i>d</i>³ = <i>a + b + c + d</i> = 0.

Докажите, что сумма каких-то двух из этих чисел равна нулю.

На плоскости даны прямая <i>l</i> и две точки <i>A</i> и <i>B</i> по одну сторону от неё. На прямой <i>l</i> выбраны точка <i>M</i>, сумма расстояний от которой до точек <i>A</i> и <i>B</i> наименьшая, и точка <i>N</i>, для которой  <i>AN = BN</i>.  Докажите, что точки <i>A, B, M, N</i> лежат на одной окружности.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка