Олимпиадные задачи по математике для 3-5 класса - сложность 2 с решениями
Можно ли в записи 2013² – 2012² – ... – 2² – 1² некоторые минусы заменить на плюсы так, чтобы значение получившегося выражения стало равно 2013?
Убирая детскую комнату к приходу гостей, мама нашла девять носков. Среди каждых четырёх из этих носков хотя бы два принадлежали одному ребёнку, а среди каждых пяти не более трёх имели одного хозяина. Сколько могло быть детей и сколько носков могло принадлежать каждому ребёнку?
Известно, что среди 63 монет есть 7 фальшивых. Все фальшивые монеты весят одинаково, все настоящие монеты также весят одинаково, и фальшивая монета легче настоящей. Как за три взвешивания на чашечных весах без гирь определить 7 настоящих монет?
Четверо детей сказали друг о друге так.
<i>Маша</i>: Задачу решили трое: Саша, Наташа и Гриша.
<i>Саша</i>: Задачу не решили трое: Маша, Наташа и Гриша.
<i>Наташа</i>: Маша и Саша солгали.
<i>Гриша</i>: Маша, Саша и Наташа сказали правду.
Сколько детей на самом деле сказали правду?
Верёвочку сложили пополам, потом ещё раз пополам, потом снова пополам, а затем все слои верёвочки разрезали в одном месте.
Какова могла быть длина верёвочки, если известно, что какие-то два из полученных кусков имели длины 9 метров и 4 метра?
Есть доска размером 7 × 12 клеток и кубик, грань которого равна клетке. Одна грань кубика окрашена невысыхающей краской. Кубик можно поставить в некоторую клетку доски и перекатывать через ребро на соседнюю грань. Ставить кубик дважды на одну и ту же клетку нельзя. Какое наибольшее количество клеток сможет посетить кубик, не испачкав доску краской?
Квадрат 4 × 4 называется <i>магическим</i>, если в его клетках встречаются все числа от 1 до 16, а суммы чисел в столбцах, строках и двух диагоналях равны между собой. Шестиклассник Сеня начал составлять магический квадрат и поставил в какую-то клетку число 1. Его младший брат Лёня решил ему помочь и поставил числа 2 и 3 в клетки, соседние по стороне с числом 1. Сможет ли Сеня после такой помощи составить магический квадрат?
У Винни-Пуха пять друзей, у каждого из которых в домике есть горшочки с медом: у Тигры – 1, у Пятачка – 2, у Совы – 3, у Иа-Иа – 4, у Кролика – 5. Винни-Пух по очереди приходит в гости к каждому другу, съедает один горшочек меда, а остальные забирает с собой. К последнему домику он подошёл, неся 10 горшочков с медом. Чей домик Пух мог посетить первым?