Олимпиадные задачи по математике для 10 класса - сложность 4 с решениями

Внутри круга радиуса <i>R</i> взята точка <i>A</i>. Через неё проведены две перпендикулярные прямые. Потом прямые повернули на угол φ относительно точки <i>A</i>. Хорды, высекаемые окружностью из этих прямых, замели при повороте фигуру, имеющую форму креста с центром в точке <i>A</i>. Найдите площадь креста.

30 учеников одного класса решили побывать друг у друга в гостях. Известно, что ученик за вечер может сделать несколько посещений, и что в тот вечер, когда к нему кто-нибудь должен прийти, он сам никуда не уходит. Покажите, что для того, чтобы все побывали в гостях у всех,

  а) четырёх вечеров недостаточно,

  б) пяти вечеров также недостаточно,

  в) а десяти вечеров достаточно,

  г) и даже семи вечеров тоже достаточно.

На бесконечной во все стороны шахматной доске выделено некоторое множество клеток <i>A</i>. На всех клетках доски, кроме множества <i>A</i>, стоят короли. Все короли могут по команде одновременно сделать ход, заключающийся в том, что король либо остаётся на месте, либо занимает соседнее поле, то есть делает "ход короля". При этом он может занять и то поле, с которого сходит другой король, но в результате хода двум королям оказаться в одной клетке запрещается. Существует ли такое <i>k</i> и такой способ движения королей, что после <i>k</i> ходов вся доска будет заполнена королями? Рассмотрите варианты:

  а) <i>A</i> есть множество всех клеток, у которых обе координаты кратны 100 (предполагается, что одна горизонтальная...

Марсианское метро на плане имеет вид замкнутой самопересекающейся линии, причём в одной точке может происходить только одно самопересечение. (Линия нигде не касается сама себя.) Доказать, что тоннель с таким планом можно прорыть так, что поезд будет проходить попеременно под и над пересекающей линией.

Многочлен <i>P</i>(<i>x</i>) со старшим коэффициентом, равным 1, обладает тем свойством, что среди значений, принимаемых им при натуральных значениях аргумента, встречаются все числа вида 2<sup><i>m</i></sup> с натуральным <i>m</i>. Докажите, что этот многочлен – первой степени.

В Чикаго живут 36 гангстеров, некоторые из которых враждуют между собой. Каждый гангстер состоит в нескольких бандах, причём нет двух банд с совпадающим составом. Оказалось, что гангстеры, состоящие в одной банде, не враждуют, но если гангстер не состоит в какой-то банде, то он враждует хотя бы с одним её участником. Какое наибольшее число банд могло быть в Чикаго?

В Чикаго орудует 36 преступных банд, некоторые из которых враждуют между собой. Каждый гангстер состоит в нескольких бандах, причём каждые два гангстера состоят в разных наборах банд. Известно, что ни один гангстер не состоит в двух бандах, враждующих между собой. Кроме того, оказалось, что каждая банда, в которой не состоит некоторый гангстер, враждует с какой-то бандой, в которой данный гангстер состоит. Какое наибольшее количество гангстеров может быть в Чикаго?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка