Олимпиадные задачи по математике для 10 класса
Говорящие весы произносят вес, округлив его до целого числа килограммов (по правилам округления: если дробная часть меньше 0,5, то число округляется вниз, а иначе – вверх; например, 3,5 округляется до 4). Вася утверждает, что, взвешиваясь на этих весах с одинаковыми бутылками, он получил такие ответы весов:<div align="center"><img src="/storage/problem-media/116812/problem_116812_img_2.gif"></div> Могло ли такое быть?
Внутри забора, представляющего собой замкнутую несамопересекающуюся ломаную, заперт тигр. На рисунке видна только часть забора (положение тигра показано крестиком). Нарисуйте, как мог бы выглядеть весь забор (забор может идти только по линиям сетки).<div align="center"><img src="/storage/problem-media/116368/problem_116368_img_2.gif"></div>
В некоторых клетках квадрата 20×20 стоит стрелочка в одном из четырёх направлений. На границе квадрата все стрелочки смотрят вдоль границы по часовой стрелке (см. рис.). Кроме того, стрелочки в соседних (возможно, по диагонали) клетках не смотрят в противоположных направлениях. Докажите, что найдётся клетка, в которой стрелочки нет. <div align="center"><img src="/storage/problem-media/115497/problem_115497_img_2.gif"> </div>
Используя в качестве чисел любое количество монет достоинством 1, 2, 5 и 10 рублей, а также (бесплатные) скобки и знаки четырех арифметических действий, составьте выражение со значением 2009, потратив как можно меньше денег.
В магазине продают DVD-диски – по одному и упаковками двух видов (упаковки разных видов различаются по количеству и стоимости). Вася подсчитал, сколько требуется денег, чтобы купить <i>N</i> дисков (если выгоднее всего купить больше дисков, чем нужно – Вася так и делает): <div align="center"><img src="/storage/problem-media/111639/problem_111639_img_2.gif"></div>Сколько дисков было в упаковках и по какой цене упаковки продавались? Какое количество денег необходимо Васе, чтобы купить не менее 29 дисков?
а) В городе Мехико для ограничения транспортного потока для каждой частной автомашины устанавливаются два дня недели, в которые она не может выезжать на улицы города. Семье требуется каждый день иметь в распоряжении не менее десяти машин. Каким наименьшим количеством машин может обойтись семья, если её члены могут сами выбирать запрещенные дни для своих автомобилей? б) В Мехико для каждой частной автомашины устанавливается один день в неделю, в который она не может выезжать на улицы города. Состоятельная семья из десяти человек подкупила полицию, и для каждой машины они называют два дня, один из которых полиция выбирает в качестве невыездного дня. Какое наименьшее количество машин нужно купить семье, чтобы каждый день каждый член семьи мог самостоятельно ездить, если утверждение невыездных...
Решите уравнение<i> cos(cos(cos(cos x)))= sin(sin(sin(sin x))) </i>.
В ящиках лежат камни. За один ход выбирается число <i>k</i>, затем камни в ящиках делятся на группы по <i>k</i> штук и остаток менее, чем из <i>k</i> штук. Оставляют по одному камню из каждой группы и весь остаток. Можно ли за пять ходов добиться, чтобы в ящиках осталось ровно по одному камню, если в каждом из них
а) не более 460 камней;
б) не более 461 камня?
У квадратного уравнения <i>x</i>² + <i>px + q</i> = 0 коэффициенты <i>p</i> и <i>q</i> увеличили на единицу. Эту операцию повторили девять раз.
Могло ли оказаться, что у каждого из десяти полученных уравнений корни – целые числа?
У квадратного уравнения <i>x</i>² + <i>px + q</i> = 0 коэффициенты <i>p</i> и <i>q</i> увеличили на единицу. Эту операцию повторили четыре раза. Приведите пример такого исходного уравнения, что у каждого из пяти полученных уравнений корни были бы целыми числами.
В выборах в 100-местный парламент участвовали 12 партий. В парламент проходят партии, за которые проголосовало строго больше 5% избирателей. Между прошедшими в парламент партиями места распределяются пропорционально числу набранных ими голосов. После выборов оказалось, что каждый избиратель проголосовал ровно за одну из партий (недействительных бюллетеней, голосов "против всех" и т. п. не было) и каждая партия получила целое число мест. При этом Партия любителей математики набрала 25% голосов. Какое наибольшее число мест в парламенте она могла получить?
В белом клетчатом квадрате 2021×2021 требуется закрасить чёрным две клетки. После этого через каждую минуту одновременно закрашиваются чёрным все клетки, которые граничат по стороне хоть с одной из уже закрашенных. Ваня выбрал две начальные клетки так, чтобы весь квадрат закрасился как можно быстрее. Через сколько минут закрасился квадрат?