Олимпиадные задачи по математике для 10 класса
На бесконечном белом листе клетчатой бумаги конечное число клеток окрашено в чёрный цвет так, что у каждой чёрной клетки чётное число (0, 2 или 4) белых клеток, соседних с ней по стороне. Докажите, что каждую белую клетку можно окрасить в красный или зелёный цвет так, чтобы у каждой чёрной клетки стало поровну красных и зелёных клеток, соседних с ней по стороне.
Боковая поверхность прямоугольного параллелепипеда с основанием <i>a</i>×<i>b</i> и высотой <i>c</i> (<i>a, b</i> и <i>c</i> – натуральные числа) оклеена по клеточкам без наложений и пропусков прямоугольниками со сторонами, параллельными рёбрам параллелепипеда, каждый из которых состоит из чётного числа единичных квадратов. При этом разрешается перегибать прямоугольники через боковые ребра параллелепипеда. Докажите, что если <i>c</i> нечётно, то число способов оклейки чётно.
На бесконечной в обе стороны полосе из клеток, пронумерованных целыми числами, лежит несколько камней (возможно, по нескольку в одной клетке). Разрешается выполнять следующие действия:<ol> <li> Снять по одному камню с клеток <i> n-</i>1 и <i> n </i> и положить один камень в клетку <i> n+</i>1; </li> <li> Снять два камня с клетки <i> n </i> и положить по одному камню в клетки <i> n+</i>1, <i> n-</i>2.</li></ol>Докажите, что при любой последовательности действий мы достигнем ситуации, когда указанные действия больше выполнять нельзя, и эта конечная ситуация не зависит от последовательности действий (а зависит только от начальной раскладки камней по клеткам).
На столе лежат две кучки монет. Известно, что суммарный вес монет из первой кучки равен суммарному весу монет из второй кучки, а для каждого натурального числа <i>k</i>, не превосходящего числа монет как в первой, так и во второй кучке, суммарный вес <i>k</i> самых тяжелых монет из первой кучки не больше суммарного веса <i>k</i> самых тяжелых монет из второй кучки. Докажите, что если заменить каждую монету, вес которой не меньше <i>x</i>, на монету веса <i>x</i> (в обеих кучках), то первая кучка монет окажется не легче второй, каково бы ни было положительное число <i>x</i>.
Внутри круга расположены точки <i>A</i><sub>1</sub>, <i>A</i><sub>2</sub>, ..., <i>A<sub>n</sub></i>, а на его границе – точки <i>B</i><sub>1</sub>, <i>B</i><sub>2</sub>, ..., <i>B<sub>n</sub></i> так, что отрезки <i>A</i><sub>1</sub><i>B</i><sub>1</sub>, <i>A</i><sub>2</sub><i>B</i><sub>2</sub>, ..., <i>A<sub>n</sub>B<sub>n</sub></i> не пересекаются. Кузнечик может перепрыгнуть из точки <i>A<sub>i</sub></i> в точку <i>A<sub>j</sub></i>, если отрезок <i>A<sub>...
Квадратная доска разделена сеткой горизонтальных и вертикальных прямых на <i>n</i>² клеток со стороной 1. При каком наибольшем <i>n</i> можно отметить <i>n</i> клеток так, чтобы каждый прямоугольник площади не менее <i>n</i> со сторонами, идущими по линиям сетки, содержал хотя бы одну отмеченную клетку?
Докажите, что существует такое натуральное число<i> n </i>, что если правильный треугольник со стороной<i> n </i>разбить прямыми, параллельными его сторонам, на<i> n<sup>2</sup> </i>правильных треугольников со стороной 1, то среди вершин этих треугольников можно выбрать1993<i>n </i>точек, никакие три из которых не являются вершинами правильного треугольника (не обязательно со сторонами, параллельными сторонам исходного треугольника).
На плоскости нарисован квадрат, стороны которого горизонтальны и вертикальны. В нём проведены несколько отрезков, параллельных сторонам, причём никакие два отрезка не лежат на одной прямой и не пересекаются по точке, внутренней для обоих отрезков. Оказалось, что отрезки разбили квадрат на прямоугольники, причём каждая вертикальная прямая, пересекающая квадрат и не содержащая отрезков разбиения, пересекает ровно <i>k</i> прямоугольников разбиения, а каждая горизонтальная прямая, пересекающая квадрат и не содержащая отрезков разбиения – ровно <i>l</i> прямоугольников. Каким могло оказаться количество прямоугольников разбиения?