Олимпиадные задачи по математике для 2-8 класса - сложность 4 с решениями

Мишень "бегущий кабан" находится в одном из<i> n </i>окошек, расположенных в ряд. Окошки закрыты занавесками так, что для стрелка мишень все время остается невидимой. Чтобы поразить мишень, достаточно выстрелить в окошко, в котором она в момент выстрела находится. Если мишень находится не в самом правом окошке, то сразу после выстрела она перемещается на одно окошко вправо; из самого правого окошка мишень никуда не перемещается. Какое наименьшее число выстрелов нужно сделать, чтобы наверняка поразить мишень?

Среди 18 деталей, выставленных в ряд, какие-то три подряд стоящие весят по 99 г, а все остальные – по 100 г. Двумя взвешиваниями на весах со стрелкой определите все 99-граммовые детали.

Имеется 8 монет, 7 из которых – настоящие, которые весят одинаково, и одна фальшивая, отличающаяся по весу от остальных. Чашечные весы без гирь таковы, что если положить на их чашки равные грузы, то любая из чашек может перевесить, если же грузы различны по массе, то обязательно перетягивает чашка с более тяжелым грузом. Как за четыре взвешивания наверняка определить фальшивую монету и установить, легче она или тяжелее остальных?

Найдите все такие тройки натуральных чисел <i>m, n</i> и <i>l</i>, что  <i>m + n</i> = (НОД(<i>m, n</i>))²,  <i>m + l</i> = (НОД(<i>m, l</i>))²,  <i>n + l</i> = (НОД(<i>n, l</i>))².

Известно, что  <i>f</i>(<i>x</i>), <i>g</i>(<i>x</i>) и <i>h</i>(<i>x</i>) – квадратные трёхчлены. Может ли уравнение  <i>f</i>(<i>g</i>(<i>h</i>(<i>x</i>)))  = 0 иметь корни 1, 2, 3, 4, 5, 6, 7 и 8?

В круговом шахматном турнире каждый участник играет с каждым из остальных один раз. За выигрыш присуждается одно очко, за ничью – пол-очка, за проигрыш – ноль. Назовём партию <i>неправильной</i>, если выигравший её шахматист в итоге набрал очков меньше проигравшего.

  а) Докажите, что неправильные партии составляют меньше ¾ общего числа партий в турнире.

  б) Докажите, что в пункте а) число ¾ нельзя заменить на меньшее.

В клетках таблицы $15\times 15$ расставлены ненулевые числа так, что каждое из них равно произведению всех чисел, стоящих в соседних клетках (соседними называем клетки, имеющие общую сторону). Докажите, что все числа в таблице положительны.

На каждой клетке доски 5×5 лежит по одной монете, все монеты внешне одинаковы. Среди них ровно 2 монеты фальшивые, они одинакового веса и легче настоящих, которые тоже весят одинаково. Фальшивые монеты лежат в клетках, имеющих ровно одну общую вершину. Можно ли за одно взвешивание на чашечных весах без гирь гарантированно найти а) 13 настоящих монет; б) 15 настоящих монет; в) 17 настоящих монет?

Известно, что среди нескольких купюр, номиналы которых – попарно различные натуральные числа, есть ровно $N$ фальшивых. Детектор за одну проверку определяет сумму номиналов всех настоящих купюр, входящих в выбранный нами набор. Докажите, что за $N$ проверок можно найти все фальшивые купюры, если а) $N = 2$; б) $N = 3$.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка