Олимпиадные задачи по математике для 4-7 класса - сложность 3 с решениями
Числа <i>x, y, z</i> удовлетворяют равенству <i>x + y + z</i> – 2(<i>xy + yz + xz</i>) + 4<i>xyz</i> = ½. Докажите, что хотя бы одно из них равно ½.
По кругу расставлены 10 железных гирек. Между каждыми соседними гирьками находится бронзовый шарик. Масса каждого шарика равна разности масс соседних с ним гирек. Докажите, что шарики можно разложить на две чаши весов так, чтобы весы уравновесились.
Квадрат разбили на 100 прямоугольников девятью вертикальными и девятью горизонтальными прямыми (параллельными его сторонам). Среди этих прямоугольников оказалось ровно 9 квадратов. Докажите, что два из этих квадратов имеют одинаковый размер.
В таблицу записано девять чисел: <div align="center"><img src="/storage/problem-media/98418/problem_98418_img_2.gif"></div>Известно, что шесть чисел – суммы строк и суммы столбцов таблицы – равны между собой:<div align="center"><i>a</i><sub>1</sub> + <i>a</i><sub>2</sub> + <i>a</i><sub>3</sub> = <i>b</i><sub>1</sub> + <i>b</i><sub>2</sub> + <i>b</i><sub>3</sub> = <i>c</i><sub>1</sub> + <i>c</i><sub>2</sub> + <i>c</i><sub>3</sub> = <i>a</i><sub>1</sub> + <i>b</i><sub>1</sub> + &...