Олимпиадные задачи по математике для 9 класса - сложность 3 с решениями
Существует ли такой квадратный трёхчлен <i>P</i>(<i>x</i>) с целыми коэффициентами, что для любого натурального числа <i>n</i>, в десятичной записи которого участвуют одни единицы, число <i>P</i>(<i>n</i>) также записывается одними единицами?
Плоскость разбита двумя семействами параллельных прямых на единичные квадратики. Назовем каемкой квадрата<i>n</i>×<i>n</i>, состоящего из квадратиков разбиения, объединение тех квадратиков, которые хотя бы одной из своих сторон примыкают изнутри к его границе. Докажите, что существует ровно один способ покрытия квадрата100<i>×</i>100, состоящего из квадратиков разбиения, неперекрывающимися каемками пятидесяти квадратов. (Каемки могут и не содержаться в квадрате100<i>× </i>100.)
Решите в положительных числах систему уравнений <img src="/storage/problem-media/109538/problem_109538_img_2.gif">
Квадратный трёхчлен <i>f</i>(<i>x</i>) разрешается заменить на один из трёхчленов <img align="absmiddle" src="/storage/problem-media/109523/problem_109523_img_2.gif"> или <img align="absmiddle" src="/storage/problem-media/109523/problem_109523_img_3.gif"> Можно ли с помощью таких операций из квадратного трёхчлена <i>x</i>² + 4<i>x</i> + 3 получить трёхчлен <i>x</i>² + 10<i>x</i> + 9?