Олимпиадные задачи по математике для 9 класса - сложность 3 с решениями

Существует ли такой квадратный трёхчлен <i>P</i>(<i>x</i>) с целыми коэффициентами, что для любого натурального числа <i>n</i>, в десятичной записи которого участвуют одни единицы, число <i>P</i>(<i>n</i>) также записывается одними единицами?

Плоскость разбита двумя семействами параллельных прямых на единичные квадратики. Назовем каемкой квадрата<i>n</i>×<i>n</i>, состоящего из квадратиков разбиения, объединение тех квадратиков, которые хотя бы одной из своих сторон примыкают изнутри к его границе. Докажите, что существует ровно один способ покрытия квадрата100<i>×</i>100, состоящего из квадратиков разбиения, неперекрывающимися каемками пятидесяти квадратов. (Каемки могут и не содержаться в квадрате100<i>× </i>100.)

Решите в положительных числах систему уравнений     <img src="/storage/problem-media/109538/problem_109538_img_2.gif">

Квадратный трёхчлен  <i>f</i>(<i>x</i>) разрешается заменить на один из трёхчленов   <img align="absmiddle" src="/storage/problem-media/109523/problem_109523_img_2.gif">   или   <img align="absmiddle" src="/storage/problem-media/109523/problem_109523_img_3.gif">   Можно ли с помощью таких операций из квадратного трёхчлена  <i>x</i>² + 4<i>x</i> + 3  получить трёхчлен  <i>x</i>² + 10<i>x</i> + 9?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка