Олимпиадные задачи по математике для 3-7 класса
На доске написаны два различных натуральных числа <i>a</i> и <i>b</i>. Меньшее из них стирают, и вместо него пишут число <img align="absmiddle" src="/storage/problem-media/109683/problem_109683_img_2.gif"> (которое может уже оказаться нецелым). С полученной парой чисел делают ту же операцию и т.д. Докажите, что в некоторый момент на доске окажутся два равных натуральных числа.
Играют двое. Первый выписывает в строку слева направо цифры, произвольно чередуя 0 и 1, пока цифр не станет всего 1999. Каждый раз после того, как первый выписал очередную цифру, второй меняет между собой две цифры из уже написанного ряда (когда написана только одна цифра, второй пропускает ход). Всегда ли второй может добиться того, чтобы после его последнего хода расположение цифр было симметричным относительно средней цифры?
Сеть автобусных маршрутов в пригороде Амстердама устроена так, что:
а) на каждом маршруте есть ровно три остановки;
б) каждые два маршрута либо вовсе не имеют общих остановок, либо имеют только одну общую остановку.
Какое наибольшее количество маршрутов может быть в этом пригороде, если в нём всего 9 остановок?
Почтальон Печкин не хотел отдавать посылку. Тогда Матроскин предложил ему сыграть в следующую игру: каждым ходом Печкин пишет в строку слева направо буквы, произвольно чередуя М и П, пока в строке не будет всего 11 букв. Матроскин после каждого его хода, если хочет, меняет местами любые две буквы. Если в итоге окажется, что записанное слово является палиндромом (то есть одинаково читается слева направо и справо налево), то Печкин отдаёт посылку. Сможет ли Матроскин играть так, чтобы обязательно получить посылку?