Олимпиадные задачи по математике для 7-9 класса - сложность 5 с решениями

На плоскости даны два таких конечных набора<i> P<sub>1</sub> </i>и<i> P<sub>2</sub> </i>выпуклых многоугольников, что любые два многоугольника из разных наборов имеют общую точку и в каждом из двух наборов<i> P<sub>1</sub> </i>и<i> P<sub>2</sub> </i>есть пара непересекающихся многоугольников. Докажите, что существует прямая, пересекающая все многоугольники обоих наборов.

На стол положили (с перекрытиями) несколько одинаковых салфеток, имеющих форму единичного круга. Всегда ли можно вбить в стол несколько точечных гвоздей так, что все салфетки будут прибиты, причём одинаковым количеством гвоздей? (Вбивать гвозди на границы кругов запрещено.)

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка