Олимпиадные задачи по математике - сложность 3 с решениями
Имеется 40 одинаковых газовых баллонов, значения давления газа в которых нам неизвестны и могут быть различны. Разрешается соединять любые баллоны друг с другом в количестве, не превосходящем заданного натурального числа <i>k</i>, а затем разъединять их; при этом давление газа в соединяемых баллонах устанавливается равным среднему арифметическому давлений в них до соединения. При каком наименьшем <i>k</i> существует способ уравнивания давлений во всех 40 баллонах независимо от первоначального распределения давлений в баллонах?
К натуральному числу<i> A </i>приписали справа три цифры. Получившееся число оказалось равным сумме всех натуральных чисел от 1 до<i> A </i>. Найдите<i> A </i>.
Какое наибольшее число клеток доски 9×9 можно разрезать по обеим диагоналям, чтобы при этом доска не распалась на несколько частей?
Дано 2<i>n</i> + 1 число (<i>n</i> – натуральное), среди которых одно число равно 0, два числа равны 1, два числа равны 2, ..., два числа равны <i>n</i>. Для каких <i>n</i> эти числа можно записать в одну строку так, чтобы для каждого натурального <i>m</i> от 1 до <i>n</i> между двумя числами, равными <i>m</i>, было расположено ровно <i>m</i> других чисел?