Олимпиадные задачи из источника «2016-2017» для 7-8 класса - сложность 1-2 с решениями

На доску выписали все собственные делители некоторого составного натурального числа <i>n</i>, увеличенные на 1. Найдите все такие числа <i>n</i>, для которых числа на доске окажутся всеми собственными делителями некоторого натурального числа <i>m</i>.

На доске написаны  <i>n</i> > 3  различных натуральных чисел, меньших чем  (<i>n</i> – 1)!.  Для каждой пары этих чисел Серёжа поделил большее на меньшее с остатком и записал в тетрадку полученное неполное частное (так, если бы он делил 100 на 7, то он бы получил  100 = 14·7 + 2  и записал бы в тетрадку число 14). Докажите, что среди чисел в тетрадке найдутся два равных.

В стране некоторые пары городов соединены односторонними прямыми авиарейсами (между любыми двумя городами есть не более одного рейса). Скажем, что город <i>A доступен</i> для города <i>B</i>, если из <i>B</i> можно долететь в <i>A</i>, возможно, с пересадками. Известно, что для любых двух городов <i>P</i> и <i>Q</i> существует город <i>R</i>, для которого и <i>P</i>, и <i>Q</i> доступны. Докажите, что существует город, для которого доступны все города страны. (Считается, что город доступен для себя.)

В произведении семи натуральных чисел каждый сомножитель уменьшили на 3. Могло ли произведение при этом увеличиться ровно в 13 раз?

В произведении пяти натуральных чисел каждый сомножитель уменьшили на 3. Могло ли произведение при этом увеличиться ровно в 15 раз?

В произведении трёх натуральных чисел каждый сомножитель уменьшили на 3. Могло ли произведение при этом увеличиться ровно на 2016?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка