Олимпиадные задачи из источника «2013-2014» - сложность 4 с решениями

Двое игроков играют в карточную игру. У них есть колода из <i>n</i> попарно различных карт. Про любые две карты из колоды известно, какая из них бьёт другую (при этом, если <i>A</i> бьёт <i>B</i>, а <i>B</i> бьёт <i>C</i>, то может оказаться, что <i>C</i> бьёт <i>A</i>). Колода распределена между игроками произвольным образом. На каждом ходу игроки открывают по верхней карте из своих колод, и тот, чья карта бьёт карту другого игрока, берёт обе карты и кладёт их в самый низ своей колоды в произвольном порядке по своему усмотрению. Докажите, что при любой исходной раздаче игроки могут, зная расположение карт, договориться и действовать так, чтобы один из игроков остался без карт.

На плоскости дано <i>n</i> выпуклых попарно пересекающихся <i>k</i>-угольников. Каждый из них можно перевести в любой другой гомотетией с положительным коэффициентом. Докажите, что на плоскости найдётся точка, принадлежащая хотя бы   <img align="absmiddle" src="/storage/problem-media/64776/problem_64776_img_2.gif">   из этих <i>k</i>-угольников.

В государстве <i>n</i> городов, и между каждыми двумя из них курсирует экспресс (в обе стороны). Для каждого экспресса цены билетов "туда" и "обратно" равны, а для разных экспрессов эти цены различны. Докажите, что путешественник может выбрать начальный город, выехать из него и проехать последовательно на  <i>n</i> – 1  экспрессах, платя за проезд на каждом следующем меньше, чем за проезд на предыдущем. (Путешественник может попадать несколько раз в один и тот же город.)

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка