Олимпиадные задачи из источника «2011-2012» для 8 класса - сложность 3 с решениями
2011-2012
НазадВыпуклый четырёхугольник <i>ABCD</i> таков, что <i>AB</i>·<i>CD</i> = <i>AD</i>·<i>BC</i>. Докажите, что –∠<i>BAC</i> + ∠<i>CBD</i> + ∠<i>DCA</i> + ∠<i>ADB</i> = 180°.
Даны различные натуральные числа <i>a</i>, <i>b</i>. На координатной плоскости нарисованы графики функций <i>y</i> = sin <i>ax</i>, <i>y</i> = sin <i>bx</i> и отмечены все точки их пересечения. Докажите, что существует натуральное число <i>c</i>, отличное от <i>a</i>, <i>b</i> и такое, что график функции <i>y</i> = sin <i>cx</i> проходит через все отмеченные точки.
Главная аудитория фирмы "Рога и копыта" представляет собой квадратный зал из восьми рядов по восемь мест. 64 сотрудника фирмы писали в этой аудитории тест, в котором было шесть вопросов с двумя вариантами ответа на каждый. Могло ли так оказаться, что среди наборов ответов сотрудников нет одинаковых, причем наборы ответов любых двух людей за соседними столами совпали не больше, чем в одном вопросе? (Столы называются соседними, если они стоят рядом в одном ряду или друг за другом в соседних рядах.)
В трапеции <i>ABCD</i> боковая сторона <i>CD</i> перпендикулярна основаниям, <i>O</i> – точка пересечения диагоналей. На описанной окружности треугольника <i>OCD</i> взята точка <i>S</i>, диаметрально противоположная точке <i>O</i>. Докажите, что ∠<i>BSC</i> = ∠<i>ASD</i>.
На окружности отмечено 2<i>N</i> точек (<i>N</i> – натуральное число). Известно, что через любую точку внутри окружности проходит не более двух хорд с концами в отмеченных точках. Назовем <i>паросочетанием</i> такой набор из <i>N</i> хорд с концами в отмеченных точках, что каждая отмеченная точка является концом ровно одной из этих хорд. Назовём паросочетание <i>чётным</i>, если количество точек, в которых пересекаются его хорды, чётно, и <i>нечётным</i> иначе. Найдите разность между количеством чётных и нечётных паросочетаний.
Дан квадрат <i>n</i>×<i>n</i>. Изначально его клетки раскрашены в белый и чёрный цвета в шахматном порядке, причём хотя бы одна из угловых клеток чёрная. За один ход разрешается в некотором квадрате 2×2 одновременно перекрасить входящие в него четыре клетки по следующему правилу: каждую белую перекрасить в чёрный цвет, каждую чёрную – в зелёный, а каждую зелёную – в белый. При каких <i>n</i> за несколько ходов можно получить шахматную раскраску, в которой чёрный и белый цвета поменялись местами?
Целые числа <i>a</i> и <i>b</i> таковы, что при любых натуральных <i>m</i> и <i>n</i> число <i>am</i>² + <i>bn</i>² является точным квадратом. Докажите, что <i>ab</i> = 0.