Олимпиадные задачи из источника «Заключительный этап» для 2-9 класса - сложность 1-2 с решениями
Натуральные числа <i>d</i> и <i>d' > d</i> – делители натурального числа <i>n</i>. Докажите, что <i>d' > d</i> + <sup><i>d</i>²</sup>/<sub><i>n</i></sub>.
Даны 10 попарно различных чисел. Для каждой пары данных чисел Вася записал у себя в тетради квадрат их разности, а Петя записал у себя в тетради модуль разности их квадратов. Могли ли в тетрадях у мальчиков получиться одинаковые наборы из 45 чисел?
На доске написаны девять приведённых квадратных трёхчленов: <i>x</i>² + <i>a</i><sub>1</sub><i>x + b</i><sub>1</sub>, <i>x</i>² + <i>a</i><sub>2</sub><i>x + b</i><sub>2</sub>, ..., <i>x</i>² + <i>a</i><sub>9</sub><i>x + b</i><sub>9</sub>. Известно, что последовательности <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub>9</sub> и <i>b</i><sub>1</sub>, <i>b</i><sub>2</sub>, ..., <i>b</i><sub>9</sub> – арифметические прогрессии. Оказалось, что сумма все...
Для некоторых 2011 натуральных чисел выписали на доску все их 2011·1005 попарных сумм.
Могло ли оказаться, что ровно треть выписанных сумм делится на 3, и ещё ровно треть из них дают остаток 1 при делении на 3?
Приведённый квадратный трёхчлен <i>P</i>(<i>x</i>) таков, что многочлены <i>P</i>(<i>x</i>) и <i>P</i>(<i>P</i>(<i>P</i>(<i>x</i>))) имеют общий корень. Докажите, что <i>P</i>(0)<i>P</i>(1) = 0.