Олимпиадные задачи из источника «2008-2009» для 1-8 класса - сложность 4 с решениями

Треугольники <i>ABC</i> и <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub> имеют равные площади. Всегда ли можно построить при помощи циркуля и линейки треугольник <i>A</i><sub>2</sub><i>B</i><sub>2</sub><i>C</i><sub>2</sub>, равный треугольнику <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub> и такой, что прямые <i>AA</i><sub>2</sub>, <i>BB</i><sub>2</sub> и <i>CC</i><sub>2</sub> будут параллельны?

По кругу стоят2009целых неотрицательных чисел, не превышающих 100. Разрешается прибавить по1к двум соседним числам, причем с любыми двумя соседними числами эту операцию можно проделать не более<i> k </i> раз. При каком наименьшем<i> k </i>все числа гарантированно можно сделать равными?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка