Олимпиадные задачи из источника «2007-2008» для 8 класса - сложность 4 с решениями

Последовательности(<i>a<sub>n</sub></i>)и(<i>b<sub>n</sub></i>)заданы условиями<i> a<sub>1</sub>=</i>1,<i> b<sub>1</sub>=</i>2,<i> a<sub>n+</sub></i>1<i>=<img src="/storage/problem-media/111872/problem_111872_img_2.gif"> </i>и<i> b<sub>n+</sub></i>1<i>=<img src="/storage/problem-media/111872/problem_111872_img_3.gif"> </i>. Докажите, что<i> a</i>2008<i><</i>5.

Дано конечное множество простых чисел <i>P</i>. Докажите, что найдётся такое натуральное число <i>x</i> , что оно представляется в виде  <i>x = a<sup>p</sup> + b<sup>p</sup></i>  (с натуральными <i>a, b</i>) при всех   <i>p</i> ∈ <i>P </i>  и не представляется в таком виде для любого простого <i>p</i> ∉ <i>P</i>.

Имеются три комиссии бюрократов. Известно, что для каждой пары бюрократов из разных комиссий среди членов оставшейся комиссии есть ровно 10 бюрократов, которые знакомы с обоими, и ровно 10 бюрократов, которые незнакомы с обоими. Найдите общее число бюрократов в комиссиях.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка