Олимпиадные задачи из источника «Региональный этап» для 2-9 класса - сложность 4 с решениями
а) В 99 ящиках лежат яблоки и апельсины.
Докажите, что можно так выбрать 50 ящиков, что в них окажется не менее половины всех яблок и не менее половины всех апельсинов. б) В 100 ящиках лежат яблоки и апельсины.
Докажите, что можно так выбрать 34 ящика, что в них окажется не менее трети всех яблок и не менее трети всех апельсинов.
Найдите все такие пары (<i>x, y</i>) натуральных чисел, что <i>x + y = a<sup>n</sup>, x</i>² + <i>y</i>² = <i>a<sup>m</sup></i> для некоторых натуральных <i>a, n, m</i>.
Каждую вершину выпуклого четырехугольника площади<i> S </i>отразили симметрично относительно диагонали, не содержащей эту вершину. Обозначим площадь получившегося четырехугольника через<i> S' </i>. Докажите, что<i> <img src="/storage/problem-media/110176/problem_110176_img_2.gif"><</i>3.