Олимпиадные задачи из источника «Региональный этап» для 2-9 класса - сложность 4 с решениями
На плоскости даны точки<i> A<sub>1</sub> </i>,<i> A<sub>2</sub> </i>,<i> A<sub>n</sub> </i>и точки<i> B<sub>1</sub> </i>,<i> B<sub>2</sub> </i>,<i> B<sub>n</sub> </i>. Докажите, что точки<i> B<sub>i</sub> </i>можно перенумеровать так, что для всех<i> i<img src="/storage/problem-media/110807/problem_110807_img_2.gif"> j </i>угол между векторами<i> <img src="/storage/problem-media/110807/problem_110807_img_3.gif"> </i>и<i> <img src="/storage/problem-media/110807/problem_110807_img_4.gif"> </i>– острый или прямой.
На диагонали <i>AC</i> выпуклого четырёхугольника <i>ABCD</i> выбрана точка <i>K</i>, для которой <i>KD = DC</i>, ∠<i>BAC</i> = ½ <i>KDC</i>, ∠<i>DAC</i> = ½ ∠<i>KBC</i>.
Докажите, что ∠<i>KDA</i> = ∠<i>BCA</i> или ∠<i>KDA</i> = ∠<i>KBA</i>.