Олимпиадные задачи из источника «Региональный этап» для 7-8 класса - сложность 4 с решениями
В стране 2000 городов, некоторые пары городов соединены дорогами. Известно, что через любой город проходит не более <i>N</i> различных несамопересекающихся циклических маршрутов нечётной длины. Докажите, что страну можно разделить на <i>N</i> + 2 республики так, чтобы никакие два города из одной республики не были соединены дорогой.
В выпуклом четырёхугольнике <i>ABCD</i> провели биссектрисы <i>l<sub>a</sub>, l<sub>b</sub>, l<sub>c</sub></i> и <i>l<sub>d</sub></i> внешних углов при вершинах <i>A, B, C</i> и <i>D</i> соответственно. Точки пересечения прямых <i>l<sub>a</sub></i> и <i>l<sub>b</sub>, l<sub>b</sub></i> и <i>l<sub>c</sub>, l<sub>c</sub></i> и <i>l<sub>d</sub>, l<sub>d</sub></i> и <i>l<sub>a</sub></i> обозначили через <i>K, L, M</i> и <i>N</i>. Известно, что три перпендикуляра, опущенных из точки <i>K</i> на <i...
Окружности <i>S</i><sub>1</sub> и <i>S</i><sub>2</sub> пересекаются в точках <i>M</i> и <i>N</i>. Через точку <i>A</i> окружности <i>S</i><sub>1</sub> проведены прямые <i>AM</i> и <i>AN</i>, пересекающие окружность <i>S</i><sub>2</sub> в точках <i>B</i> и <i>C</i>, а через точку <i>D</i> окружности <i>S</i><sub>2</sub> – прямые <i>DM</i> и <i>DN</i>, пересекающие <i>S</i><sub>1</sub> в точках <i>E</i> и <i>F</i>, причём точки <i>A, E, F</i> лежат по одну сторону от прямой <i>MN</i>,...