Олимпиадные задачи из источника «1996-1997» для 8 класса - сложность 4 с решениями
1996-1997
НазадВ клетках таблицы 10×10 расставлены числа 1, 2, 3, ..., 100 так, что сумма любых двух соседних чисел не превосходит <i>S</i>.
Найдите наименьшее возможное значение <i>S</i>. (Числа называются соседними, если они стоят в клетках, имеющих общую сторону.)
Найдите все такие тройки натуральных чисел <i>m, n</i> и <i>l</i>, что <i>m + n</i> = (НОД(<i>m, n</i>))², <i>m + l</i> = (НОД(<i>m, l</i>))², <i>n + l</i> = (НОД(<i>n, l</i>))².