Олимпиадные задачи из источника «Региональный этап» для 3-7 класса - сложность 2-3 с решениями
Можно ли в таблице 11×11 расставить натуральные числа от 1 до 121 так, чтобы числа, отличающиеся друг от друга на единицу, располагались в клетках с общей стороной, а все точные квадраты попали в один столбец?
Найдите все такие простые числа <i>p</i>, что число <i>p</i>² + 11 имеет ровно шесть различных делителей (включая единицу и само число).
Можно ли расставить по кругу 1995 различных натуральных чисел так, чтобы для каждых двух соседних чисел отношение большего из них к меньшему было простым числом?