Олимпиадные задачи из источника «Турнир городов» для 6-10 класса - сложность 5 с решениями

Турнир городов

Назад

<i>k</i> вершин правильного <i>n</i>-угольника закрашены. Закраска называется <i>почти равномерной</i>, если для любого натурального <i>m</i> верно следующее условие: если <i>M</i><sub>1</sub> – множество <i>m</i> расположенных подряд вершин и <i>M</i><sub>2</sub> – другое такое множество, то количество закрашенных вершин в <i>M</i><sub>1</sub> отличается от количества закрашенных вершин в <i>M</i><sub>2</sub> не больше чем на 1. Доказать, что для любых натуральных <i>n</i> и  <i>k</i> ≤ <i>n</i>  почти равномерная закраска существует и что она единственна с точностью до поворотов закрашенного множест...

На стол положили (с перекрытиями) несколько одинаковых салфеток, имеющих форму единичного круга. Всегда ли можно вбить в стол несколько точечных гвоздей так, что все салфетки будут прибиты, причём одинаковым количеством гвоздей? (Вбивать гвозди на границы кругов запрещено.)

На острове живут хамелеоны пяти цветов. Когда один хамелеон кусает другого, цвет укушенного хамелеона меняется по некоторому правилу, причём новый цвет зависит только от цвета укусившего и цвета укушенного. Известно, что $2023$ красных хамелеона могут договориться о последовательности укусов, после которой все они станут синими. При каком наименьшем $k$ можно гарантировать, что $k$ красных хамелеонов смогут договориться так, чтобы стать синими? Например, правила могут быть такими: если красный хамелеон кусает зелёного, укушенный меняет цвет на синий; если зелёный кусает красного, укушенный остаётся красным, то есть «меняет цвет на красный»; если красный хамелеон кусает красного, укушенный меняет цвет на жёлтый, и так далее. (Конкретные правила смены цветов могут быть устроены иначе.)

Белая фигура «жук» стоит в угловой клетке доски $1000\times n$, где $n$ — нечётное натуральное число, большее $2020$. В двух ближайших к ней углах доски стоят два чёрных шахматных слона. При каждом ходе жук или переходит на клетку, соседнюю по стороне, или ходит как шахматный конь. Жук хочет достичь противоположного угла доски, не проходя через клетки, занятые или атакованные слоном, и побывав на каждой из остальных клеток ровно по одному разу. Покажите, что количество путей, по которым может пройти жук, не зависит от $n$.

Выпуклый четырёхугольник $ABCD$ обладает таким свойством: ни из каких трёх его сторон нельзя сложить треугольник. Докажите, что а) один из углов этого четырёхугольника не больше $60^\circ$; б) один из углов этого четырёхугольника не меньше $120^\circ$.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка