Олимпиадные задачи из источника «осенний тур, 7-8 класс» для 10 класса - сложность 1-4 с решениями

Игра в "супершахматы" ведётся на доске размером 30×30, и в ней участвуют 20 разных фигур, каждая из которых ходит по своим правилам. Известно, однако, что

  1) любая фигура с любого поля бьёт не более 20 полей и

  2) если фигуру сдвинуть на несколько полей, то битые поля соответственно сдвигаются (может быть, исчезают за пределы поля).

Докажите, что

  а) любая фигура <i>F</i> бьёт данное поле <i>Х</i> не более, чем с 20 полей;

  б) можно расставить на доске все 20 фигур так, чтобы ни одна из них не била другую.

Последовательность чисел  <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ...  такова, что  <i>x</i><sub>1</sub> = ½  и   <img align="absmiddle" src="/storage/problem-media/97884/problem_97884_img_2.gif">   для всякого натурального <i>k</i>.

Найдите целую часть суммы   <img align="absmiddle" src="/storage/problem-media/97884/problem_97884_img_3.gif">

Двое бросают монету: один бросил ее 10 раз, другой – 11 раз.

Чему равна вероятность того, что у второго монета упала орлом большее число раз, чем у первого?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка