Олимпиадные задачи из источника «весенний тур, основной вариант, 7-8 класс» для 8-9 класса - сложность 1-5 с решениями

Докажите, что существует бесконечное число пар таких соседних натуральных чисел, что разложение каждого из них содержит любой простой сомножитель не менее чем во второй степени. Примеры таких пар чисел:  (8, 9),  (288, 289).

Разрезать равнобедренный прямоугольный треугольник на несколько подобных ему треугольников, так чтобы любые два из них были различны по размерам.

Рассматриваются  4(<i>N</i> – 1)  граничных клеток таблицы размером <i>N×N</i>. Нужно вписать в эти клетки последовательные  4(<i>N</i> – 1)  целых чисел так, чтобы сумма чисел в вершинах любого прямоугольника со сторонами, параллельными диагоналям таблицы, в том числе и в "вырожденных" прямоугольниках – диагоналях, равнялась одному и тому же числу (для прямоугольников суммируются четыре числа, для диагоналей – два числа). Возможно ли это? Рассмотрите случаи:

  а)  <i>N</i> = 3;

  б)  <i>N</i> = 4;

  в)  <i>N</i> = 5.

На уроке танцев 15 мальчиков и 15 девочек построили двумя параллельными колоннами, так что образовалось 15 пар. В каждой паре измерили разницу роста мальчика и девочки (разница берётся по абсолютной величине, то есть из большего вычитают меньшее). Максимальная разность оказалась 10 см. В другой раз перед образованием пар каждую колонну предварительно построили по росту. Докажите, что максимальная разность будет не больше 10 см.

Дана бесконечная клетчатая бумага со стороной клетки, равной единице. Расстоянием между двумя клетками называется длина кратчайшего пути ладьи от одной клетки до другой (считается путь центра ладьи). В какое наименьшее число красок нужно раскрасить доску (каждая клетка закрашивается одной краской), чтобы две клетки, находящиеся на расстоянии 6, были всегда окрашены разными красками?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка