Олимпиадные задачи по математике

а) Точка <i>O</i> лежит внутри выпуклого <i>n</i>-угольника <i>A</i><sub>1</sub><i>A</i><sub>2</sub><i>A</i><sub>3</sub>...<i>A<sub>n</sub></i>. Рассматриваются углы <i>A<sub>i</sub>OA<sub>j</sub></i> при всевозможных парах  (<i>i, j</i>)  (<i>i, j</i> – различные натуральные числа от 1 до <i>n</i>). Докажите, что среди этих углов найдётся по крайней мере  <i>n</i> – 1  не острых (прямых, тупых или развёрнутых) углов.б) То же для выпуклого многогранника, имеющего <i>n</i> вершин.

Рассматриваются  4(<i>N</i> – 1)  граничных клеток таблицы размером <i>N×N</i>. Нужно вписать в эти клетки последовательные  4(<i>N</i> – 1)  целых чисел так, чтобы сумма чисел в вершинах любого прямоугольника со сторонами, параллельными диагоналям таблицы, в том числе и в "вырожденных" прямоугольниках – диагоналях, равнялась одному и тому же числу (для прямоугольников суммируются четыре числа, для диагоналей – два числа). Возможно ли это? Рассмотрите случаи:

  а)  <i>N</i> = 3;

  б)  <i>N</i> = 4;

  в)  <i>N</i> = 5.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка