Олимпиадные задачи из источника «весенний тур, базовый вариант, 10-11 класс» для 4-11 класса - сложность 2 с решениями

Дан многочлен с целыми коэффициентами, имеющий хотя бы один целый корень. Наибольший общий делитель всех его целых корней равен $1$. Докажите, что если старший коэффициент многочлена равен $1$, то наибольший общий делитель остальных коэффициентов тоже равен $1$.

На плоскости провели $100$ прямых, среди них никакие две не параллельны и никакие три не проходят через одну точку. Рассмотрим всевозможные четырёхугольники, все стороны которых лежат на этих прямых (в том числе четырёхугольники, внутри которых проведены линии). Обязательно ли выпуклых среди них столько же, сколько невыпуклых?

Найдите наименьшее натуральное число, у которого найдутся четыре различных натуральных делителя с суммой 2025.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка