Олимпиадные задачи из источника «осенний тур, базовый вариант, 8-9 класс» - сложность 1-2 с решениями
осенний тур, базовый вариант, 8-9 класс
НазадНабор состоит из одинаковых трёхклеточных уголков, у которых центральные клетки испачканы краской. Прямоугольную доску покрыли в один слой уголками, не выходящими за пределы доски, а затем убрали уголки. Испачканные клетки оставили на доске следы. Всегда ли по этим следам можно узнать, как именно лежали уголки?
Мама и сын играют. Сначала сын режет головку сыра 300 г на 4 куска. Затем мама распределяет 280 г масла на 2 тарелки. Наконец, сын раскладывает куски сыра на те же тарелки. Он выиграет, если на каждой тарелке сыра будет не меньше, чем масла (иначе выиграет мама). Кто из них может победить, как бы ни действовал другой?
Натуральное число $M$ представили в виде произведения простых сомножителей. Затем каждый из них увеличили на 1, и произведение стало равно $N$. Оказалось, что $N$ делится на $M$. Докажите, что если теперь разложить $N$ на простые множители и каждый из них увеличить на 1, то полученное произведение будет делиться на $N$.
В ряд лежат 100 камней: чёрный, белый, чёрный, белый, ..., чёрный, белый. Одной операцией либо выбирают два чёрных камня, между которыми лежат только белые камни, и перекрашивают все эти белые камни в чёрный цвет, либо выбирают два белых камня, между которыми лежат только чёрные камни, и перекрашивают все эти чёрные камни в белый цвет. Можно ли за несколько таких операций получить ряд, в котором идут сначала 50 чёрных камней, а потом 50 белых?