Олимпиадные задачи из источника «44 турнир (2022/2023 год)» для 11 класса - сложность 3 с решениями

Дан треугольник $ABC$. Пусть $I$ – центр его вписанной окружности, $P$ – такая точка на стороне $AB$, что угол $PIB$ прямой, $Q$ – точка, симметричная точке $I$ относительно вершины $A$. Докажите, что точки $C$, $I$, $P$, $Q$ лежат на одной окружности.

В таблице $44\times 44$ часть клеток синие, а остальные красные. Никакие синие клетки не граничат друг с другом по стороне. Множество красных клеток, наоборот, связно по сторонам (от любой красной клетки можно добраться до любой другой красной, переходя из клетки в клетку через общую сторону и не заходя в синие клетки). Докажите, что синих клеток в таблице меньше трети.

Существует ли целое $n>1$, удовлетворяющее неравенству $$[\sqrt{n-2} + 2\sqrt{n+2}] < [\sqrt{9n+6}]?$$ (Здесь $[x]$ обозначает целую часть числа $x$, то есть наибольшее целое число, не превосходящее $x$.)

Дана треугольная пирамида $SABC$, основание которой – равносторонний треугольник $ABC$, а все плоские углы при вершине $S$ равны $\alpha$. При каком наименьшем $\alpha$ можно утверждать, что эта пирамида правильная?

Пусть I — центр вписанной окружности треугольника ABC, N — основание биссектрисы угла B. Касательная к описанной окружности треугольника AIN в вершине A и касательная к описанной окружности треугольника CIN в вершине C пересекаются в точке D. Докажите, что прямые AC и DI перпендикулярны.

Дан многочлен $P(x)$ степени $n>5$ с целыми коэффициентами, имеющий $n$ различных целых корней. Докажите, что многочлен $P(x)+3$ имеет $n$ различных действительных корней.

В клетчатом квадрате между каждыми двумя соседними по стороне клетками есть закрытая дверь. Жук начинает с какой-то клетки и ходит по клеткам, проходя через двери. Закрытую дверь он открывает в ту сторону, в которую идёт, и оставляет дверь открытой. Через открытую дверь жук может пройти только в ту сторону, в которую дверь была открыта. Докажите, что если жук в какой-либо момент захочет вернуться в исходную клетку, то он сможет это сделать.

Даны две концентрические окружности $\Omega$ и $\omega$. Хорда $AD$ окружности $\Omega$ касается $\omega$. Внутри меньшего сегмента $AD$ круга с границей $\Omega$ взята произвольная точка $P$. Касательные из $P$ к окружности $\omega$ пересекают большую дугу $AD$ окружности $\Omega$ в точках $B$ и $C$. Отрезки $BD$ и $AC$ пересекаются в точке $Q$. Докажите, что отрезок $PQ$ делит отрезок $AD$ на две равные части.

Даны два взаимно простых числа $p, q$, больших 1 и различающихся больше чем на 1. Докажите, что найдётся натуральное $n$, для которого НОК($p + n, q + n$) < НОК($p, q$).

Какой наибольший рациональный корень может иметь уравнение вида $ax$² + $bx + c$ = 0, где $a, b$ и $c$ – натуральные числа, не превосходящие 100?

Барон Мюнхгаузен утверждает, что нарисовал многоугольник и точку внутри него так, что любая прямая, проходящая через эту точку, делит этот многоугольник на три многоугольника. Может ли барон быть прав?

Для каждого из чисел 1, 19, 199, 1999 и т. д. изготовили одну отдельную карточку и записали на ней это число. а) Можно ли выбрать не менее трёх карточек так, чтобы сумма чисел на них равнялась числу, все цифры которого, кроме одной, – двойки?

б) Пусть выбрали несколько карточек так, что сумма чисел на них равна числу, все цифры которого, кроме одной, – двойки. Какой может быть его цифра, отличная от двойки?

Доска 2$N$×2$N$ покрыта неперекрывающимися доминошками 1×2. По доске прошла<i>хромая</i>ладья, побывав на каждой клетке по одному разу (каждый ход хромой ладьи – на клетку, соседнюю по стороне). Назовём ход<i>продольным</i>, если это переход из одной клетки доминошки на другую клетку той же доминошки. Каково а) наибольшее;

б) наименьшее возможное число продольных ходов?

Дан остроугольный неравнобедренный треугольник. Одним действием разрешено разрезать один из имеющихся треугольников по медиане на два треугольника. Могут ли через несколько действий все треугольники оказаться равнобедренными?

На прямой отмечено 2022 точки так, что каждые две соседние точки расположены на одинаковом расстоянии. Половина точек покрашена в красный цвет, а другая половина – в синий. Может ли сумма длин всевозможных отрезков, у которых левый конец красный, а правый – синий, равняться сумме длин всех отрезков, у которых левый конец синий, а правый – красный? (Концы рассматриваемых отрезков – не обязательно соседние отмеченные точки.)

Большая окружность вписана в ромб, каждая из двух меньших окружностей касается двух сторон ромба и большой окружности, как на рисунке. Через точки касания окружностей со сторонами ромба провели четыре штриховые прямые, как на рисунке. Докажите, что они образуют квадрат. <img src="/storage/problem-media/67148/problem_67148_img_2.png">

Пятиугольник $ABCDE$ описан около окружности. Углы при его вершинах $A$, $C$ и $E$ равны $100^\circ$. Найдите угол $ACE$.

Существует ли натуральное число, которое можно представить в виде произведения двух палиндромов более чем 100 способами? (Палиндромом называется натуральное число, которое одинаково читается как слева направо, так и справа налево.)

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка