Олимпиадные задачи из источника «весенний тур, сложный вариант, 10-11 класс» для 8 класса - сложность 3 с решениями
весенний тур, сложный вариант, 10-11 класс
НазадРассмотрим на клетчатой плоскости такие ломаные с началом в точке (0, 0) и вершинами в целых точках, что каждое очередное звено идёт по сторонам клеток либо вверх, либо вправо. Каждой такой ломаной соответствует <i>червяк</i> – фигура, состоящая из клеток плоскости, имеющих хотя бы одну общую точку с этой ломаной. Докажите, что червяков, которые можно разбить на двуклеточные доминошки ровно $n > 2$ различными способами, столько же, сколько натуральных чисел, меньших $n$ и взаимно простых с $n$. (Червяки разные, если состоят из разных наборов клеток.)
Петя и Вася играют в игру. Для каждых пяти различных переменных из набора $x_{1}, ..., x_{10}$ имеется единственная карточка, на которой записано их произведение. Петя и Вася по очереди берут по карточке, начинает Петя. По правилам игры, когда все карточки разобраны, Вася присваивает переменным значения как хочет, но так, что $0 \leqslant x_{1} \leqslant ... \leqslant x_{10}$. Может ли Вася гарантированно добиться того, чтобы сумма произведений на его карточках была больше, чем у Пети?
Ортогональной проекцией тетраэдра на плоскость одной из его граней является трапеция площади 1.
а) Может ли ортогональной проекцией этого тетраэдра на плоскость другой его грани быть квадрат площади 1?
б) А квадрат площади <sup>1</sup>/<sub>2019</sub>?
К плоскости приклеены два непересекающихся не обязательно одинаковых деревянных круга – серый и чёрный. Дан бесконечный деревянный угол, одна сторона которого серая, а другая – чёрная. Его передвигают так, чтобы круги были снаружи угла, причём серая сторона касалась серого круга, а чёрная – чёрного (касание происходит не в вершине). Докажите, что внутри угла можно нарисовать луч, выходящий из вершины, так, чтобы при всевозможных положениях угла этот луч проходил через одну и ту же точку плоскости.
В клетках квадратной таблицы $n\times n$, где $n$ > 1, требуется расставить различные целые числа от 1 до $n^2$ так, чтобы каждые два последовательных числа оказались в соседних по стороне клетках, а каждые два числа, дающие одинаковые остатки при делении на $n$, – в разных строках и в разных столбцах. При каких $n$ это возможно?
На прямой сидят 2019 точечных кузнечиков. За ход какой-нибудь из кузнечиков прыгает через какого-нибудь другого так, чтобы оказаться на прежнем расстоянии от него. Прыгая только вправо, кузнечики могут добиться того, чтобы какие-то двое из них оказались на расстоянии ровно 1 мм друг от друга. Докажите, что кузнечики могут добиться того же, прыгая из начального положения только влево.