Олимпиадные задачи из источника «9-10 класс» для 10 класса - сложность 3-4 с решениями

Марсианское метро на плане имеет вид замкнутой самопересекающейся линии, причём в одной точке может происходить только одно самопересечение. (Линия нигде не касается сама себя.) Доказать, что тоннель с таким планом можно прорыть так, что поезд будет проходить попеременно под и над пересекающей линией.

а) Из произвольной точки <i>M</i> внутри правильного <i>n</i>-угольника проведены перпендикуляры  <i>MK</i><sub>1</sub>, <i>MK</i><sub>2</sub>, ..., <i>MK<sub>n</sub></i>  к его сторонам (или их продолжениям). Докажите, что   <img align="absmiddle" src="/storage/problem-media/97793/problem_97793_img_2.gif">   (<i>O</i> – центр <i>n</i>-угольника). б) Докажите, что сумма векторов, проведённых из любой точки <i>M</i> внутри правильного тетраэдра перпендикулярно к его граням, равна   <img align="absmiddle" src="/storage/problem-media/97793/problem_97793_img_3.gif">   где <i>O</i> – центр тетраэдра....

Докажите для каждого натурального числа  <i>n</i> > 1  равенство:   [<i>n</i><sup>1/2</sup>] + [<i>n</i><sup>1/3</sup>] + ... + [<i>n</i><sup>1/<i>n</i></sup>] = [log<sub><sub>2</sub></sub><i>n</i>] + [log<sub><sub>3</sub></sub><i>n</i>] + ... + [log<i><sub>n</sub>n</i>].

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка