Олимпиадные задачи из источника «осенний тур, сложный вариант, 8-9 класс» - сложность 3 с решениями

У Деда Мороза было <i>n</i> сортов конфет, по <i>k</i> штук каждого сорта. Он распределил все конфеты как попало по <i>k</i> подаркам, в каждый – по <i>n</i> конфет, и раздал их <i>k</i> детям. Дети решили восстановить справедливость. Два ребёнка готовы передать друг другу по конфете, если каждый получает конфету сорта, которого у него нет. Всегда ли можно организовать серию обменов так, что у каждого окажутся конфеты всех сортов?

Петя увидел на доске несколько различных чисел и решил составить выражение, среди значений которого все эти числа есть, а других нет. Составляя выражение, Петя может использовать какие угодно числа, особый знак "±", а также обычные знаки "+", "–", "×" и скобки. Значения составленного выражения он вычисляет, выбирая для каждого знака "±" либо "+", либо "–" во всех возможных комбинациях. Например, если на доске были числа 4 и 6, подойдёт выражение  5 ± 1,  а если на доске были числа 1, 2 и 3, то подойдёт выражение  (2 ± 0,5) ± 0,5.  Возможно ли составить необходимое выражение, если на доске были написаны

  а) числа 1, 2, 4;

  б) любые 100 различных действительных чисел?

В треугольнике <i>ABC</i> медианы <i>AA</i><sub>0</sub>, <i>BB</i><sub>0</sub>, <i>CC</i><sub>0</sub> пересекаются в точке <i>M</i>.

Докажите, что центры описанных окружностей треугольников <i>MA</i><sub>0</sub><i>B</i><sub>0</sub>, <i>MCB</i><sub>0</sub>, <i>MA</i><sub>0</sub><i>C</i><sub>0</sub>, <i>MBC</i><sub>0</sub> и точка <i>M</i> лежат на одной окружности.

Из спичек сложен клетчатый квадрат 9×9, сторона каждой клетки – одна спичка. Петя и Вася по очереди убирают по спичке, начинает Петя. Выиграет тот, после чьего хода не останется целых квадратиков 1×1. Кто может действовать так, чтобы обеспечить себе победу, как бы ни играл его соперник?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка