Олимпиадные задачи из источника «осенний тур, сложный вариант, 10-11 класс» для 10 класса
осенний тур, сложный вариант, 10-11 класс
НазадКлетчатая полоска 1×1000000 разбита на 100 сегментов. В каждой клетке записано целое число, причём в клетках, лежащих в одном сегменте, числа совпадают. В каждую клетку поставили по фишке. Затем сделали такую операцию: все фишки одновременно передвинули, каждую – на то количество клеток вправо, которое указано в её клетке (если число отрицательно, то фишка двигается влево); при этом оказалось, что в каждую клетку снова попало по фишке. Эту операцию повторяют много раз. Для каждой фишки первого сегмента подсчитали, через сколько операций она впервые снова окажется в этом сегменте. Докажите, что среди полученных чисел не более 100 различных.
а) Внутри сферы находится некоторая точка <i>A</i>. Через <i>A</i> провели три попарно перпендикулярные прямые, которые пересекли сферу в шести точках. Докажите, что центр масс этих точек не зависит от выбора такой тройки прямых.б) Внутри сферы находится икосаэдр, его центр <i>A</i> не обязательно совпадает с центром сферы. Лучи, выпущенные из <i>A</i> в вершины икосаэдра, высекают 12 точек на сфере. Икосаэдр повернули так, что его центр остался на месте. Теперь лучи высекают 12 новых точек.
Докажите, что их центр масс совпадает с центром масс старых 12 точек.
На сторонах <i>AB</i> и <i>BC</i> треугольника <i>ABC</i> выбраны соответственно точки <i>C</i><sub>1</sub> и <i>A</i><sub>1</sub>, отличные от вершин. Пусть <i>K</i> – середина <i>A</i><sub>1</sub><i>C</i><sub>1</sub>, а <i>I</i> – центр окружности, вписанной в треугольник <i>ABC</i>. Оказалось, что четырёхугольник <i>A</i><sub>1</sub><i>BC</i><sub>1</sub><i>I</i> вписанный. Докажите, что угол <i>AKC</i> тупой.
Чичиков играет с Ноздрёвым. Сначала Ноздрёв раскладывает 1001 орех по трём коробочкам. Посмотрев на раскладку, Чичиков называет любое целое число <i>N</i> от 1 до 1001. Далее Ноздрёв должен переложить, если надо, один или несколько орехов в пустую четвёртую коробочку и предъявить Чичикову одну или несколько коробочек, где в сумме ровно <i>N</i> орехов. В результате Чичиков получит столько мертвых душ, сколько орехов переложил Ноздрёв. Какое наибольшее число душ может гарантировать себе Чичиков, как бы ни играл Ноздрёв?
Дана бесконечная последовательность чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ... Известно, что для любого номера <i>k</i> можно указать такое натуральное число <i>t</i>, что
<i>a<sub>k</sub> = a<sub>k+t</sub> = a</i><sub><i>k</i>+2<i>t</i></sub> = ... Обязательно ли тогда эта последовательность периодическая, то есть существует ли такое натуральное <i>T</i>, что <i>a<sub>k</sub> = a<sub>k+T</sub></i> при любом натуральном <i>k</i>?