Олимпиадные задачи из источника «весенний тур, сложный вариант, 8-9 класс» для 11 класса
весенний тур, сложный вариант, 8-9 класс
НазадВ равностороннем треугольнике <i>ABC</i> провели высоту <i>AH</i>. В треугольнике <i>ABH</i> отметили точку <i>I</i> пересечения биссектрис. В треугольниках <i>ABI, BCI</i> и <i>CAI</i> тоже отметили точки пересечения биссектрис – <i>L, K</i> и <i>J</i> соответственно. Найдите угол <i>KJL</i>.
Банк обслуживает миллион клиентов, список которых известен Остапу Бендеру. У каждого есть свой PIN-код из шести цифр, у разных клиентов коды разные. Остап Бендер за один ход может выбрать любого клиента, которого он еще не выбирал, и подсмотреть у него цифры кода на любых <i>N</i> позициях (у разных клиентов он может выбирать разные позиции). Остап хочет узнать код миллионера Корейко. При каком наименьшем <i>N</i> он гарантированно сможет это сделать?
Пусть <i>p</i> – простое число. Набор из <i>p</i> + 2 натуральных чисел (не обязательно различных) назовём <i>интересным</i>, если сумма любых <i>p</i> из них делится на каждое из двух оставшихся чисел. Найдите все интересные наборы.
В команде сторожей у каждого есть разряд (натуральное число). Сторож <i>N</i>-го разряда <i>N</i> суток дежурит, потом <i>N</i> суток спит, снова <i>N</i> суток дежурит, <i>N</i> – спит, и так далее. Известно, что разряды любых двух сторожей различаются хотя бы в три раза. Может ли такая команда осуществлять ежедневное дежурство? (Приступить к дежурству сторожа могут не одновременно, в один день могут дежурить несколько сторожей.)