Олимпиадные задачи из источника «весенний тур, сложный вариант, 10-11 класс» для 4-10 класса - сложность 2-3 с решениями

Даны <i>N</i> синих и <i>N</i> красных палочек, причём сумма длин синих палочек равна сумме длин красных. Известно, что из синих палочек можно сложить <i>N</i>-угольник, и из красных – тоже. Всегда ли можно выбрать одну синюю и одну красную палочки и перекрасить их (синюю – в красный цвет, а красную – в синий) так, что снова из синих палочек можно будет сложить <i>N</i>-угольник, и из красных – тоже? Решите задачу

  а) для  <i>N</i> = 3;

  б) для произвольного натурального  <i>N</i> > 3.

От балки в форме треугольной призмы с двух сторон отпилили (плоской пилой) по куску. Спилы не задели ни оснований, ни друг друга.

  а) Могут ли спилы быть подобными, но не равными треугольниками?

  б) Может ли один спил быть равносторонним треугольником со стороной 1, а другой – равносторонним треугольником со стороной 2?

В пространстве с декартовой системой координат дан прямоугольный параллелепипед, вершины которого имеют целочисленные координаты. Его объём равен 2011. Докажите, что рёбра параллелепипеда параллельны координатным осям.

У барона Мюнхгаузена есть 50 гирь. Веса этих гирь – различные натуральные числа, не превосходящие 100, а суммарный вес гирь – чётное число. Барон утверждает, что нельзя часть этих гирь положить на одну чашу весов, а остальные – на другую чашу так, чтобы весы оказались в равновесии. Могут ли эти слова барона быть правдой?

В каждой клетке квадратной таблицы написано по числу. Известно, что в каждой строке таблицы сумма двух наибольших чисел равна <i>a</i>, а в каждом столбце сумма двух наибольших чисел равна <i>b</i>. Докажите, что  <i>a = b</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка