Олимпиадные задачи из источника «весенний тур, сложный вариант, 10-11 класс» для 2-11 класса - сложность 3-4 с решениями
весенний тур, сложный вариант, 10-11 класс
НазадДве фирмы по очереди нанимают программистов, среди которых есть 11 гениев. Первого программиста каждая фирма выбирает произвольно, а каждый следующий должен быть знаком с кем-то из ранее нанятых данной фирмой. Если фирма не может нанять программиста по этим правилам, она прекращает приём, а другая может продолжать. Список программистов и их знакомств заранее известен, включая информацию о том, кто гении. Могут ли знакомства быть устроены так, что фирма, вступающая в игру второй, сможет нанять 10 гениев, как бы ни действовала первая фирма?
Боковые стороны <i>AB</i> и <i>CD</i> трапеции <i>ABCD</i> являются соответственно хордами окружностей ω<sub>1</sub> и ω<sub>2</sub>, касающихся друг друга внешним образом. Градусные меры касающихся дуг <i>AB</i> и <i>CD</i> равны α и β. Окружности ω<sub>3</sub> и ω<sub>4</sub> также имеют хорды <i>AB</i> и <i>CD</i> соответственно. Их дуги <i>AB</i> и <i>CD</i>, расположенные с той же стороны от хорд, что соответствующие дуги первых двух окружностей, имеют градусные меры β и α. Докажите, что ω<sub>3</sub> и ω<sub>4</sub> тоже касаются.
Даны <i>N</i> синих и <i>N</i> красных палочек, причём сумма длин синих палочек равна сумме длин красных. Известно, что из синих палочек можно сложить <i>N</i>-угольник, и из красных – тоже. Всегда ли можно выбрать одну синюю и одну красную палочки и перекрасить их (синюю – в красный цвет, а красную – в синий) так, что снова из синих палочек можно будет сложить <i>N</i>-угольник, и из красных – тоже? Решите задачу
а) для <i>N</i> = 3;
б) для произвольного натурального <i>N</i> > 3.
От балки в форме треугольной призмы с двух сторон отпилили (плоской пилой) по куску. Спилы не задели ни оснований, ни друг друга.
а) Могут ли спилы быть подобными, но не равными треугольниками?
б) Может ли один спил быть равносторонним треугольником со стороной 1, а другой – равносторонним треугольником со стороной 2?
В каждой клетке квадратной таблицы написано по числу. Известно, что в каждой строке таблицы сумма двух наибольших чисел равна <i>a</i>, а в каждом столбце сумма двух наибольших чисел равна <i>b</i>. Докажите, что <i>a = b</i>.