Олимпиадные задачи из источника «осенний тур, базовый вариант, 8-9 класс»

На новом сайте зарегистрировалось 2000 человек. Каждый пригласил к себе в друзья по 1000 человек. Два человека <i>объявляются</i> друзьями тогда и только тогда, когда каждый из них пригласил другого в друзья. Какое наименьшее количество пар друзей могло образоваться?

Семизначный код, состоящий из семи различных цифр, назовем <i>хорошим</i>. Паролем сейфа является хороший код. Известно, что сейф откроется, если введён хороший код и на каком-нибудь месте цифра кода совпала с соответствующей цифрой пароля. Можно ли гарантированно открыть сейф быстрее, чем за семь попыток?

На столе лежит картонный круг радиуса 5 см. Петя, пока возможно, прикладывает к кругу снаружи картонные квадраты со стороной 5 см так, чтобы выполнялись условия:

  1) у каждого квадрата одна вершина лежит на границе круга;

  2) квадраты не пересекаются;

  3) каждый следующий квадрат касается предыдущего вершиной к вершине.

Определите, сколько квадратов может выложить Петя, и докажите, что последний и первый квадрат тоже коснутся вершинами.

Есть 40 гирек массой 1 г, 2 г, ..., 40 г. Из них выбрали 10 гирь чётной массы и положили на левую чашу весов. Затем выбрали 10 гирь нечётной массы и положили на правую чашу весов. Весы оказались в равновесии. Докажите, что на какой-нибудь чаше есть две гири с разностью масс в 20 г.

Можно ли квадрат разрезать на 9 квадратов и раскрасить их так, чтобы получились 1 белый, 3 серых и 5 чёрных квадратов, причём одноцветные квадраты были бы равны, а разноцветные квадраты – не равны?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка