Олимпиадные задачи из источника «весенний тур, основной вариант, 10-11 класс» - сложность 2 с решениями

На бумаге "в клеточку" нарисован выпуклый многоугольник <i>M</i>, так что все его вершины находятся в вершинах клеток и ни одна из его сторон не идёт по вертикали или горизонтали. Докажите, что сумма длин вертикальных отрезков линий сетки, заключённых внутри <i>M</i>, равна сумме длин горизонтальных отрезков линий сетки внутри <i>M</i>.

Натуральные числа <i>m</i> и <i>n</i> взаимно просты (не имеют общего делителя, отличного от единицы). Дробь   <img align="absmiddle" src="/storage/problem-media/98481/problem_98481_img_2.gif">   можно сократить на число <i>d</i>.

Каково наибольшее возможное значение <i>d</i>?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка