Олимпиадные задачи из источника «весенний тур, основной вариант, 10-11 класс» для 7-8 класса - сложность 3-4 с решениями

Диагонали трапеции <i>ABCD</i> пересекаются в точке <i>K</i>. На боковых сторонах трапеции, как на диаметрах, построены окружности. Точка <i>K</i> лежит вне этих окружностей. Докажите, что длины касательных, проведённых к этим окружностям из точки <i>K</i>, равны.

Докажите, что среди 50 человек найдутся двое, у которых чётное число общих знакомых (быть может, 0) среди остальных 48 человек.  

На координатной плоскости отмечены некоторые точки с целыми координатами. Известно, что никакие четыре из них не лежат на одной окружности. Докажите, что найдётся круг радиуса 1995, в котором не отмечено ни одной точки.  

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка