Олимпиадные задачи из источника «весенний тур, основной вариант, 10-11 класс» для 10 класса - сложность 3-4 с решениями
весенний тур, основной вариант, 10-11 класс
НазадДокажите, что среди 50 человек найдутся двое, у которых чётное число общих знакомых (быть может, 0) среди остальных 48 человек.
Существует ли такой невыпуклый многогранник, что из некоторой точки <i>М</i>, лежащей вне него, не видна ни одна из его вершин?
(Многогранник сделан из непрозрачного материала, так что сквозь него ничего не видно.)
а) Разбейте отрезок [0, 1] на чёрные и белые отрезки так, чтобы для любого многочлена <i>p</i>(<i>x</i>) степени не выше второй сумма приращений <i>p</i>(<i>x</i>) по всем чёрным отрезкам равнялась сумме приращений <i>p</i>(<i>x</i>) по всем белым интервалам.
(Приращением многочлена <i>p</i> по отрезку (<i>a, b</i>) называется число <i>p</i>(<i>b</i>) – <i>p</i>(<i>a</i>).) б) Удастся ли проделать аналогичную операцию для всех многочленов степени не выше 1995?
Существует ли такая сфера, на которой имеется ровно одна рациональная точка? (Рациональная точка – точка, у которой все три декартовы координаты – рациональные числа.)