Олимпиадные задачи из источника «осенний тур, основной вариант, 10-11 класс» для 5-9 класса - сложность 2 с решениями

Рассматривается шестиугольник, который является пересечением двух (не обязательно равных) правильных треугольников.

Докажите, что если параллельно перенести один из треугольников, то периметр пересечения (если оно остаётся шестиугольником), не меняется.

Десятичные записи натуральных чисел выписаны подряд, начиная с единицы, до некоторого <i>n</i> включительно:   12345678910111213...(<i>n</i>). Существует ли такое <i>n</i>, что в этой записи все десять цифр встречаются одинаковое количество раз?

В угол с вершиной <i>A</i> вписана окружность, касающаяся сторон угла в точках <i>B</i> и <i>C</i>. В области, ограниченной отрезками <i>AB, AC</i> и меньшей дугой <i>BC</i>, расположен отрезок. Докажите, что его длина не превышает <i>AB</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка