Олимпиадные задачи из источника «осенний тур, основной вариант, 8-9 класс» для 10 класса - сложность 3 с решениями

Числовая последовательность определяется условиями:   <img align="absmiddle" src="/storage/problem-media/98152/problem_98152_img_2.gif">  

Докажите, что среди членов этой последовательности бесконечно много полных квадратов.

 

Можно ли подобрать два многочлена <i>P</i>(<i>x</i>) и <i>Q</i>(<i>x</i>) с целыми коэффициентами так, что  <i>P – Q</i>,  <i>P</i> и  <i>P + Q</i>  – квадраты некоторых многочленов (причём <i>Q</i> не получается умножением <i>P</i> на число)?

В таблице  <i>n×n</i>  разрешается добавить ко всем числам любого несамопересекающегося замкнутого маршрута ладьи по 1. В первоначальной таблице по диагонали стояли единицы, а остальные были нули. Можно ли с помощью нескольких разрешённых преобразований добиться того, что все числа в таблице станут равны? (Считается, что ладья побывала во всех клетках таблицы, через которые проходит её путь.)

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка