Олимпиадные задачи из источника «осенний тур, основной вариант, 10-11 класс» для 1-9 класса - сложность 1-2 с решениями

Куб с ребром <i>n</i> составлен из белых и чёрных кубиков с ребром 1 таким образом, что каждый белый кубик имеет общую грань ровно с тремя чёрными, а каждый чёрный – ровно с тремя белыми. При каких <i>n</i> это возможно?

Докажите, что существует такой набор из 100 различных натуральных чисел <i>c</i><sub>1</sub>, <i>c</i><sub>2</sub>, ..., <i>c</i><sub>100</sub>, что для любых двух соседних чисел <i>c<sub>i</sub></i> и <i>c</i><sub><i>i</i>+1</sub> этого набора сумма   <img align="absmiddle" src="/storage/problem-media/98157/problem_98157_img_2.gif">   есть квадрат целого числа.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка