Олимпиадные задачи из источника «осенний тур, основной вариант, 10-11 класс» для 2-8 класса - сложность 3 с решениями

На основании <i>AB</i> равнобедренного треугольника <i>ABC</i> выбрана точка <i>D</i> так, что окружность, вписанная в треугольник <i>BCD</i>, имеет тот же радиус, что и окружность, касающаяся продолжений отрезков <i>CA</i> и <i>CD</i> и отрезка <i>AD</i> (вневписанная окружность треугольника <i>ACD</i>). Докажите, что этот радиус равен одной четверти высоты треугольника <i>ABC</i>, опущенной на его боковую сторону.

На дуге <i>AC</i> описанной окружности правильного треугольника <i>ABC</i> взята точка <i>M</i>, отличная от <i>C</i>, <i>P</i> – середина этой дуги. Пусть <i>N</i> – середина хорды <i>BM, K</i> – основание перпендикуляра, опущенного из точки <i>P</i> на <i>MC</i>. Докажите, что треугольник <i>ANK</i> правильный.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка